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ABSTRACT
A numerical approach to optimal adaptive integer pulse control of stochastic non-
linear systems is presented. For most stochastic nonlinear systems, optimal adaptive
control rules cannot be derived with analytical methods. A robust optimization al-
gorithm is created. The complete nonlinear adaptively controlled stochastic system
is simulated during 100 years, for 100 alternative sequences of stochastic distur-
bances, for every feasible integer combination of adaptive control rules. The optimal
adaptive control rules that maximize the expected value of the objective function
are selected as the optimal adaptive control rules. The method is very general and
can easily be applied to most adaptive nonlinear stochastic control problems, from
technology, management or other fields. The method is tested and applied to the
wolf-moose predator prey system. The parameters of this stochastic nonlinear dy-
namical system have recently been estimated from empirical data from Isle Royale in
Lake Superior, USA. The objective function is the expected total present value of all
hunting net revenues and the environmental value of preserving the wolf population.
The value of the wolf population is a strictly increasing and strictly concave function
of the population level. Periodically, the region is visited and the population levels
are determined. If the population levels, one for each species, exceed the optimal
control limits, then the populations are reduced to the control limits, via hunting.
Then, the system is left to develop until the next period. Optimal population control
limits and objective function values are determined for alternative levels of the wolf
population value function. The average optimal moose hunting level is a decreasing
function of the wolf population value parameter and an increasing function of the
level of risk in the predator prey system. The average optimal wolf population level
is an increasing function of the wolf population value parameter and a decreasing
function of the level of risk in the predator prey system.
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1. Introduction

Dynamical systems can be studied via differential and/or difference equations. Differ-
ence equations are relevant when we treat time as discrete. In continuous time, we
use differential equations. A very large part of the theoretical system dynamics litera-
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ture focuses on differential equations. One important reason probably is that explicit
solutions often can be obtained via analytical solutions. The field is classical and the
ambition has often been to derive explicit solutions in continuous time. Often, discrete
time and difference equations are however more suitable for the real problems at hand.
Many of the classical dynamic analysis methods and problems are presented in the
great books by [2], [1] and [14].
Often, the classical applications of dynamic system theory come from ecological prob-
lems. [8] was a pioneer who determined solutions to predator prey systems with analyt-
ical methods in continuous time. [4] and [6] contribute, with the help of empirical data
and observations, to the applications and theories of such systems. Optimal control of
dynamical systems, in particular under risk, is an area that has gained considerable
interest. [3], [13] and [16] contain most of the theories and methods.
In recent years, optimal control problems have gained considerable attention in many
application areas. As the level of detail increases, it is often found that the classical op-
timization approaches based on assumptions of differentiable functions, certainty and
analytical solutions have to be modified. Relevant assumptions are needed in order to
model relevant problems. [11] introduce the field of modeling and control of systems
that simultaneously include discrete and continuous dynamics. They denote such sys-
tems hybdrid systems, or cyber-physical systems. In order to model and control such
systems, several new methods may be needed.
One of the early applications of the hybrid system ideas is presented in [17]. They
show that manufacturing processes can be considerably improved via integration of
system state monitoring and alternative adaptive control methods. They also perform
real experiments to show how a machine can become more than 50% more efficient via
the proposed adaptive approach. In logistics, we find very interesting applications of
nonlinear and discontinuous control. [10] determine optimal adaptive control rules for
unmanned aerial vehicles (UAV) under the influence of uncertainties and several non-
linearities. [15] study and optimize adaptive control rules for heavy trucks that follow
each other on roads, in aeras where the terrain is not always flat and where the roads
are not always straight. In both of these articles, numerical studies and simulations are
included that show the gains obtained via the suggested adaptive approaches. Non-
linear and discontinuous adaptive control rules have also been found to be optimal in
DC motors, by [12], and in other kinds of motors, by [5]. Both of these studies handle
several nonlinearities and stochastic disturbances. In both studies, analytical methods
are combined with numerical methods, simulations and practical experiments.
This paper focuses on a numerical approach to optimal adaptive integer pulse con-
trol of stochastic nonlinear systems. One important reason is, that for most stochastic
nonlinear systems, optimal adaptive control rules cannot be derived with analytical
methods. In special cases, however, continuous time and stochastic processes may be
combined with analytical derivations of optimal adaptive control rules. One such ex-
ample of an optimization analysis in continuous time, where risk is present, is [7].
There, however, only one species is controlled, namely moose. Furthermore, there are
no nonlinearities in the stochastic process.
In order to test the general optimization method, we will apply it to the wolf-moose
predator prey system. The parameters of this stochastic nonlinear dynamical system
have recently been estimated from empirical data from Isle Royale, an island in Lake
Superior, USA. The empirical data, representing the time period 1959 to 2019, was
obtained from [9]. Periodically, the region is visited and the population levels are deter-
mined. If the population levels, one for each species, exceed the optimal control limits,
then the populations are reduced to the control limits, via hunting. Then, the system
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is left to develop until the next period. Optimal population control limits and objective
function values will be determined for alternative levels of the wolf population value
function.

2. Materials and methods

A robust optimization algorithm is created. The complete nonlinear adaptively con-
trolled stochastic system is simulated during 100 years, for 100 alternative sequences
of stochastic disturbances, for every feasible integer combination of adaptive control
rules. The optimal adaptive control rules that maximize the expected value of the
objective function are selected as the optimal adaptive control rules. The method is
very general and can easily be applied to most adaptive nonlinear stochastic control
problems, from technology, management or other fields.
The objective function is the total present value of all hunting net revenues and the
environmental value of preserving the wolf population. The value of the wolf popula-
tion is a strictly increasing and strictly concave function of the population level. The
objective function, π, is presented in equation (1). The rate of interest is r. u(.) and
v(.) are the numbers of hunted and killed moose and wolf, respectively. M(.) and W(.)
are the sizes of the moose and wolf populations. PARWψ(W(.)) is the environmental
value of preserving the wolf population. The value of the wolf population is a strictly
increasing and strictly concave function of the population level. In the software, found
in the appendix, ψ(W) is defined as LN(1+W). PM and PW are the net profits per
killed moose and wolf, respectively. The parameter values used in the optimizations
are:
PM = $ 1000, PW = $ 1000 and r = 3%. In the different Figures, the values of PARW

are different. All details are found in the Appendix.

π = E

(∑
t

e−rt (PMu(t, •) + PW v(t, •) + PARWΨ(W (t, •)))

)
(1)

The simultaneous difference equation system in general form, found in (2), describes
how the populations of moose and wolf, develop over time. The difference equations
contain stochastic components, εM and εW . These are described in more details in (7)
and (9). {

∆M = φ (M,W, u, εM ) ,∀t
∆W = ϕ (M,W, v, εW ) , ∀t (2)

In equation (3) we see how the expected value of the objective function is estimated
from N complete stochastic scenarios. In every stochastic scenario, n, the adaptive
control functions are the same. However, the random number sequences, εM (t, n) and
εW (t, n), are different for different n.

π = N−1
∑
t

N∑
n=1

e−rt (PMu(t, n) + PW v(t, n) + PARWΨ(W (t, n))) (3)
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Furthermore, all scenarios have the same initial conditions. These are found in (4).

(M(0, n),W (0, n)) = (M0,W0) = (1200, 25) ,∀n (4)

When the optimal control functions, u∗(t, n) and v∗(t, n) and are known and utilized,
we may denote the conditional moose and wolf population values optimal. These are
M∗(.) and W∗(.). In (5), we see how the optimized control functions and values can
be used to calculate the optimal expected value π∗.

π∗ = N−1
∑
t

∑
n

e−rt (PMu
∗(t, n) + PW v

∗(t, n) + PARWΨ(W ∗(t, n))) (5)

The empirical data from Isle Royal was used to derive the equations (6) – (11) via
multiple regression analysis. The time intervals, ∆t, in these regressions, were one
year.
In equation (6), we see how the change of the moose population is affected by the
sizes of the moose population and the wolf population. The standard deviations of the
parameter values are given below the estimated parameter values, in brackets. The
number of observations was 60 and the multiple R value was 0.367. All parameters in
equations (6) and (8) obtained P-values below 5%.

∆M = 0.372M − 0.178× 10−3M2 − 6.593W +MεM
[0.135]

[
0.0845× 10−3

]
[2.215]

(6)

The stochastic residual of (6) is obtained this way: A normally distributed random
number, defined in (7), is multiplied by the size of the population.

εM ∼ N
(
µM , σ

2
M

)
, µM = 0, σM ≈ 0.174 (7)

In equation (8), we see how the change of the wolf population is affected by the sizes
of the moose population and the wolf population. The standard deviations of the
parameter values are given below the estimated parameter values, in brackets. The
number of observations was 60 and the multiple R value was 0.272.

∆W = −0.244W + 0.230× 10−3MW +WεW
[0.117]

[
0.107× 10−3

] (8)

The stochastic residual of (8) is obtained this way: A normally distributed random
number, defined in (9), is multiplied by the size of the population. The correlation
between the random numbers (7) and (9) is zero.

εW ∼ N
(
µW , σ

2
W

)
, µW = 0, σW ≈ 0.334 (9)

The stochastic nonlinear system, without controls, is (10):{
∆M = 0.372M − 0.178× 10−3M2 − 6.593W +MεM
∆W = −0.244W + 0.230× 10−3MW +WεW

(10)
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When we introduce the controls, u and v, that are functions of different variables and
parameters, we get (11):{

∆M = 0.372M − 0.178× 10−3M2 − 6.593W − u(•) +MεM
∆W = −0.244W + 0.230× 10−3MW − v(•) +WεW

(11)

In several cases, it is interesting to see how the amount of risk in the difference equa-
tions of moose and wolf, influence the optimal adaptive control rules and expected
results. We introduce “RISK” to describe this influence. Compare equation (12). If
RISK is 0, then we consider the system to be completely deterministic. If RISK=1,
then we have the degree of risk that describes reality, according to the empirical data.{

∆M = 0.372M − 0.178× 10−3M2 − 6.593W − u(•) +MεM ×RISK
∆W = −0.244W + 0.230× 10−3MW − v(•) +WεW ×RISK

(12)

Each year, the moose and wolf populations develop according to (12). The intervals
between population control, in the form of hunting missions, are however five years.
Several numerical specifications that are computationally necessary but have less gen-
eral theoretical interest, are made in the software. The complete optimization model
is included in the Appendix.

3. Results

The average optimal moose hunting level, Averu, is a decreasing function of the wolf
population value parameter, PARW . This is found in Figure 1. If RISK = 0, we have
Averu 0. The real degree of risk, RISK = 1, gives Averu 1. Hence, the average optimal
moose hunting level is higher (Averu 1), a result of the real degree of risk (RISK = 1),
than the result that we get if we assume that there is no risk (Averu 0). In Figure 2, we
see that the optimal moose control limit, Optu0, which is the lowest level of the moose
population that we accept without starting to hunt, is an increasing function of the
wolf population value parameter, PARW . This is reasonable, since the wolf needs moose
as food. If we want to keep a larger wolf population, we should hunt less intensively
for moose. Optu0 0 and Optu0 1 represent the cases RISK = 0 and RISK = 1. The
average optimal moose population level, AverM, increases more if the wolf population
value parameter, PARW increases, under risk than under certainty. This is seen in
Figure 3. This is reasonable. More wolfs need more moose as food. If we want to keep
a larger wolf population, we should let the wolfs eat more moose. If the stochastic
variations are larger, it is more important to have extra supplies of food available for
a wolf population that sometimes is very large. AverM 0 and AverM 1 represent the
cases RISK = 0 and RISK = 1.
Figure 4. shows that the optimal moose control limit, Optu0, which is the lowest level
of the moose population that we accept without starting to hunt, is always lower than
the average moose population, AverM. The graph shows the situation under risk. One
important reason for the difference between the curves is that the hunting only occurs
periodically. In the software, the default hunting interval is 5 years. In Figure 5., we see
that, if RISK = 0, the optimal wolf control limit, Optv0 0, is very close to the average
wolf population size, AverW 0. Of course, in reality, the stochastic variations in the
population make this unrealistic. Compare Figure 6. In Figure 6., we see that, in reality,
when RISK = 1, the optimal wolf control limit, Optv0 1, is much higher than the
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Figure 1.

Figure 2.

average wolf population size, AverW 1. The stochastic variations in the population are
considerable. With five year hunting intervals and because of the stochastic changes,
the wolf population can grow far above the optimal wolf control limit, Optv0 1. If that
happens, the hunt will reduce the population to the limit, Optv0 1. Stochastic changes
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Figure 3.

Figure 4.

can however also reduce the wolf population very much during five years. Then, no
hunting takes place. For these reasons, with the realistic level of risk, RISK = 1, the
average wolf population size should be expected to be far below the optimal wolf control
limit, as we see in Figure 6. If the wolf population value parameter would be very high
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Figure 5.

Figure 6.

and there would be no risk in the system, RISK = 0, we should focus on keeping the
wolf population at a high and stable level. This is consistent with Figure 7. There, the
average wolf hunting level, Averv, goes to zero. This is represented by Averv 0. If the
risk is realistic, RISK = 1, however, and the wolf population is comparatively high,
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then there is a lot of stochastic variation in the wolf population. This is handled via a
much higher average wolf hunting level. Compare Averv 1. In Figure 8., we see how the

Figure 7.

average optimal wolf population increases with the wolf population value parameter
and decreases with the level of risk. The alternatives AverW 0 and AverW 1 represent
RISK = 0 and RISK = 1, respectively. These things are consistent with the results
presented in Figures 1 – 7. Finally, as we see in Figure 9., the optimal objective function
value, is a decreasing function of the level of risk in the stochastic system. MOptObj 0
and MOptObj 1 correspond to RISK = 0 and RISK = 1, respectively. This is quite
reasonable. With stochastic variations, the population levels will randomly change
from the levels that would be optimal with consideration of the objective function.
The control efforts are optimized but they only occur periodically. Hence, they cannot
continuously change the population levels. Furthermore, the controls only make it
possible to reduce the population sizes. If the populations are “too low”, it is not
feasible in the model to “increase the population sizes”. Of course, in reality, it is
sometimes possible, to move some more wolfs to the area. This has been done in some
countries to avoid extinction. This can also be a way to avoid genetic problems that
can appear in small populations. In the optimization code, it would be possible to
introduce options to increase the populations, simultaneously reducing the objective
function with the relevant costs. Clearly, the objective function is an increasing and
convex function of the wolf population value parameter. This follows from the fact
that the number of wolves and the value per wolf simultaneously increase if the wolf
population value parameter increases.
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Figure 8.

Figure 9.

4. Discussion

Would it have been possible to use analytical methods to solve the problems in this
paper? The simple answer is: No. Fleming and Rishel (1975) present the theory of
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stochastic optimal control very well. However, it is quite clear that we can never
expect to handle the relevant problem in this paper via stochastic optimal control
theory in continuous time. Would it have been possible to optimize the management
of the two species system with alternative methods? One method that is always avail-
able is stochastic dynamic programming. This approach is well described by Winston
(2004). Then, however, it would have been necessary to estimate transition probability
matrices to be used in the stochastic dynamic programming algorithm. Such trans-
formations of the original problem introduce new approximations. The nonlinearities
cause particular problems and most likely more errors appear. These efforts would
not lead to a better solution of the original problem. With the method used in this
manuscript, transformations and redefinitions are not necessary. You simply use the
stochastic difference equations, as they are, in a repeated sequence. This is a more
simple and direct method. Furthermore, if the number of stochastic scenarios in the
method used in this paper, increases, the precision of the method also increases. The
only problem is to select the desired level of precision, which is a question of processing
time. The necessary processing time is however very limited in problems of this type.
All of the results derived and presented in this paper, were derived with 98 seconds
of CPU time with an Intel CORE i5, 8th Generation, processor. Of course, it always
takes time to develop software. On the other hand, the software is already available
in the Appendix.
Now, let us consider the interests of stakeholders and policymakers, in the model and
the results obtained in this study. First, we define a list of stakeholders or interest
groups. Individual persons may belong to zero, one or several of these groups: The for-
est land owners, the forest products industry, the moose hunters, the general public,
environmentally interested people, people that worry about global warming and the
government.
The forest land owners are usually interested in economically profitable wood pro-
duction. They prefer a stable population of moose, at a low and controllable level,
since a moose population that is sometimes very large can destroy forest plantations
completely. Hence, they benefit from a large and stable wolf population and/or a large
and stable moose hunting level. They are expected to benefit from the controlled pop-
ulation levels that applications of the new model can lead to. The owners of forest
products industry plants have interests in good and stable availability of timber of
good quality. Large and unstable moose populations give more damages to timber
quality and timber volume that smaller and more stable moose populations. A large
and stable wolf population is good for them. An alternative is a large moose hunting
level. Hence, they also benefit from population control based on applications of the
new model.
The moose hunters benefit from a low wolf population and a comparatively large
moose population. However, the moose hunters are also often forest land owners and
may have interests in the forest products industries. In any case, the model is a tool
that can be used to find the best compromise solution also for their different interests.
Environmentally interested people usually want to preserve stable wildlife populations
of different kinds. Obviously, the wolf and moose populations have been very unstable
during long periods without population control. Periodically, the wolf has been almost
extinct. Furthermore, other animal and plant populations are influenced by wolves
and moose and may also periodically suffer, without adaptive wolf and moose con-
trol. Hence, the new model should be useful also for these environmentally concerned
groups.
The global temperature is an increasing function of CO2 level in the atmosphere. Large
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and uncontrolled moose populations can destroy many trees that otherwise would ab-
sorb considerable amounts of CO2 from the atmosphere. Hence, people interested in
a cooler climate should be interested in a large and stable wolf population and/or a
large level of stable moose hunting. The model is useful in such analyses. Finally, the
general public and politicians of all kinds should be interested in the many possible
applications of the model that the different interest groups should be interested in.
Without population management based on analysis with an adaptive model of this
type, the solutions cannot be assumed to become optimized for anybody.

5. Conclusions

A robust numerical approach to optimal adaptive integer pulse control of stochastic
nonlinear systems has been created. This is important, because for most stochastic
nonlinear systems, optimal adaptive control rules cannot be derived with analytical
methods. The method is very general and can easily be applied to most adaptive non-
linear stochastic control problem, from engineering, technology, management or other
fields.
The complete nonlinear adaptively controlled stochastic system is simulated during
the period of interest, for a very large number of alternative sequences of stochastic
disturbances, for every feasible integer combination of adaptive control rules. The opti-
mal adaptive control rules that maximize the expected value of the objective function
are selected as the optimal adaptive control rules.
The application showed, in several ways, that the level of risk in the nonlinear system
is very important to the optimal adaptive control rules: a. The average optimal moose
hunting level is a decreasing function of the wolf population value parameter and an
increasing function of the level of risk in the predator prey system. b. The average
optimal wolf population level is an increasing function of the wolf population value
parameter and a decreasing function of the level of risk in the predator prey system.

Appendix A. The optimization model:

The following optimization program was used to calculate all results presented in this
is paper. It is developed for QB64.
REM AdaptCtrl
REM Peter Lohmnader 210228
OPEN ”C:\Users\Peter\Desktop\RESULTS\AdapOut.txt” FOR OUTPUT AS #1
DIM Epsilon(2, 100, 100), M(100, 100), W(100, 100), u(100, 100), v(100, 100),
regt(100), d(100)
NTOT = 100
FOR i = 1 TO 2
FOR j = 0 TO 100
FOR N = 1 TO NTOT
eps = 0
FOR k = 1 TO 12
eps = eps + RND
NEXT k
Epsilon(i, j, N) = eps - 6
NEXT N
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NEXT j
NEXT i
REM Initial conditions
FOR N = 1 TO NTOT
M(0, N) = 1200
W(0, N) = 25
NEXT N
REM Discounting function
R = 0.03
FOR t = 0 TO 100
d(t) = EXP(-R * t)
NEXT t
PRINT ” RISK PARW Optu0 Optv0 OptObj AverM AverW Averu Averv ”
PRINT #1, ” RISK PARW Optu0 Optv0 OptObj AverM AverW Averu Averv ”
FOR RISK = 0 TO 1 STEP 1
STM = 0.174 * RISK
STW = 0.334 * RISK
FOR PARW = 0 TO 200000 STEP 10000
REM Default parameters of control rules
u0 = 1000
u1 = 1
v0 = 4
v1 = 1
timepath = 0
Interval = 5
REM Optimization of the objective function
OptObj = 0
FOR u0 = 500 TO 1500 STEP 100
FOR v0 = 2 TO 30
FOR N = 1 TO NTOT
FOR t = 1 TO 100
regt(t) = 0
test = INT(t / Interval) - t / Interval
IF test = 0 THEN regt(t) = 1
M(t, N) = M(t - 1, N) + 0.372 * M(t - 1, N) - 0.000178 * M(t - 1, N) * M(t - 1, N) -
6.593 * W(t - 1, N)
+ M(t - 1, N) * STM * Epsilon(1, t - 1, N)
W(t, N) = W(t - 1, N) - 0.244 * W(t - 1, N) + 0.000230 * M(t - 1, N) * W(t - 1, N)
+ W(t - 1, N) * STW * Epsilon(2, t - 1, N)
M(t, N) = INT(M(t, N) + 0.5)
W(t, N) = INT(W(t, N) + 0.5)
u(t, N) = 0
v(t, N) = 0
IF regt(t) = 0 THEN GOTO 100
uev = M(t, N) - u0
IF uev > 0 THEN u(t, N) = INT(uev * u1 + 0.5)
IF u(t, N) > M(t, N) THEN u(t, N) = M(t, N)
vev = W(t, N) - v0
IF vev > 0 THEN v(t, N) = INT(vev * v1 + 0.5)
IF v(t, N) > W(t, N) THEN v(t, N) = W(t, N)
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M(t, N) = M(t, N) - u(t, N)
W(t, N) = W(t, N) - v(t, N)
100 REM
IF M(t, N) < 0 THEN M(t, N) = 0
IF W(t, N) < 0 THEN W(t, N) = 0
NEXT t
IF timepath = 0 THEN GOTO 200
PRINT #1, ””
PRINT #1, ” t M W regt u v”
FOR t = 0 TO 100
PRINT USING ”########”; t; M(t, N); W(t, N); regt(t); u(t, N); v(t, N)
PRINT #1, USING ”#####.##”; t; M(t, N); W(t, N); regt(t); u(t, N); v(t, N)
NEXT t
200 REM
NEXT N
obj = 0
FOR N = 1 TO NTOT
FOR t = 1 TO 100
obj = obj + d(t) * (1000 * u(t, N) + 1000 * v(t, N) + PARW * LOG(1 + W(t, N)))
NEXT t
NEXT N
obj = obj / NTOT
IF obj < OptObj THEN GOTO 300
Optu0 = u0
Optv0 = v0
OptObj = obj
AverM = 0
AverW = 0
Averu = 0
Averv = 0
FOR N = 1 TO NTOT
FOR t = 1 TO 100
AverM = AverM + M(t, N) / NTOT / 100
AverW = AverW + W(t, N) / NTOT / 100
Averu = Averu + u(t, N) / NTOT / 100
Averv = Averv + v(t, N) / NTOT / 100
NEXT t
NEXT N
300 REM
NEXT v0
NEXT u0
PRINT USING ”#######.##”; RISK;
PRINT USING ”##########”; PARW; Optu0; Optv0; OptObj;
PRINT USING ”#######.##”; AverM; AverW; Averu; Averv
PRINT #1, USING ”#######.##”; RISK;
PRINT #1, USING ”##########”; PARW; Optu0; Optv0; OptObj;
PRINT #1, USING ”#######.##”; AverM; AverW; Averu; Averv
NEXT PARW
NEXT RISK
END
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Appendix B. Table

Table B1. Optimized results from the optimization model:

RISK PARW Optu0 Optv0 OptObj AverM AverW Averu Averv
0.00 0 600 2 4800935 932.75 3.02 166.46 0.28
0.00 10000 600 2 5227138 932.75 3.02 166.46 0.28
0.00 20000 600 2 5653461 932.75 3.02 166.46 0.28
0.00 30000 600 4 6178636 906.71 4.94 154.30 0.26
0.00 40000 700 6 6797018 994.93 6.86 144.56 0.24
0.00 50000 700 9 7462465 991.99 7.04 143.43 0.21
0.00 60000 800 10 8181700 1059.05 9.94 125.89 0.20
0.00 70000 800 12 8981711 1033.98 11.86 114.30 0.18
0.00 80000 800 15 9796166 1031.48 12.03 113.24 0.15
0.00 90000 800 17 10624063 1028.33 12.25 111.85 0.13
0.00 100000 900 17 11504882 1074.29 16.66 84.23 0.13
0.00 110000 900 19 12431596 1048.98 18.58 72.45 0.11
0.00 120000 900 20 13368959 1048.33 18.63 72.14 0.10
0.00 130000 900 22 14310103 1046.53 18.75 71.36 0.08
0.00 140000 900 24 15259542 1043.34 18.97 69.91 0.06
0.00 150000 1000 25 16247772 1065.17 25.10 30.22 0.05
0.00 160000 1000 26 17277430 1053.37 26.06 24.33 0.04
0.00 170000 1000 28 18309208 1027.94 27.98 11.79 0.02
0.00 180000 1000 28 19359250 1027.94 27.98 11.79 0.02
0.00 190000 1000 29 20414604 1015.34 28.94 5.33 0.01
0.00 200000 1000 29 21474132 1015.34 28.94 5.33 0.01
1.00 0 600 2 4751509 942.09 1.34 169.73 0.27
1.00 10000 600 2 4961350 942.09 1.34 169.73 0.27
1.00 20000 600 3 5180255 940.21 1.46 168.92 0.26
1.00 30000 600 6 5450907 934.41 1.84 166.41 0.24
1.00 40000 600 7 5749353 932.89 1.93 165.76 0.23
1.00 50000 700 10 6090864 1033.09 2.49 161.59 0.23
1.00 60000 800 12 6476809 1121.58 3.23 153.21 0.25
1.00 70000 800 13 6895000 1118.93 3.34 152.45 0.24
1.00 80000 1000 15 7335542 1257.38 5.28 126.54 0.36
1.00 90000 1000 15 7851468 1257.38 5.28 126.54 0.36
1.00 100000 1100 16 8376443 1305.87 6.57 110.15 0.47
1.00 110000 1100 16 8937077 1305.87 6.57 110.15 0.47
1.00 120000 1100 16 9497668 1305.87 6.57 110.15 0.47
1.00 130000 1300 16 10121377 1403.28 8.74 80.13 0.75
1.00 140000 1300 16 10745463 1403.28 8.74 80.13 0.75
1.00 150000 1300 16 11369613 1403.28 8.74 80.13 0.75
1.00 160000 1300 16 11993697 1403.28 8.74 80.13 0.75
1.00 170000 1300 16 12617788 1403.28 8.74 80.13 0.75
1.00 180000 1400 16 13252275 1444.42 9.58 66.43 0.90
1.00 190000 1400 16 13896613 1444.42 9.58 66.43 0.90
1.00 200000 1400 16 14540942 1444.42 9.58 66.43 0.90
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